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812, Japan 

Received 2 October 1989 

Abstract. The quantum R matrix for Cartan’s exceptional simple Lie algebra G, in its 
seven-dimensional (minimal) representation is presented. The R matrix is determined 
through the irreducible decomposition of the tensor modules over the quantised universal 
enveloping algebra lJ<,(G2). This defines a new solvable seven-state 175-vertex model on 
the planar square lattice whose Boltzmann weights satisfy the Yang-Baxter equation. For 
the equivalent face model, the local state probability is obtained in terms of a relative of 
a level-1 string function related to the affine Lie algebra pair Bi” 2 (3;’’. 

1. Introduction 

Quantum group structures are playing important roles in many branches of mathemati- 
cal physics. They have been a key to understanding the intimate relation among the 
recent developments in conformal field theories, operator algebras, link invariants and 
solvable lattice models. Study of the Yang-Baxter equation ( Y B E )  is one origin of the 
basic notion of quantum groups, i.e. deformations of the universal enveloping algebras 
[l] .  Given a simple Lie algebra g, the quantum group corresponds to a specific 
one-parameter deformation U,(g) of the universal enveloping algebra maintaining the 
Hopf algebra structure. The representation theory provides a systematic method for 
building the quantum R matrices, leading to a large family of trigonometric solutions 
of the Y B E .  A class of the quantum R matrices has been constructed along this line 
for Lie algebras of classical type; s l (n) ,  s o ( n )  and sp(2n)  [2,3]. 

The purpose of this paper is to study an exceptional case. Namely, we determine 
the explicit form of the quantum R matrix for Cartan’s exceptional simple Lie algebra 
G, in the fundamental seven-dimensional representation. As a result, a new solvable 
vertex model on the two-dimensional square lattice is obtained. The physical degree 
of freedom on each bond assumes seven possible values, corresponding to the weights 
of the representation. There is a constraint that the total weight of the left and the 
lower bonds of a vertex is equal to that of the right and the upper bonds. This yields 
175 possible configurations round a vertex. To each of them a trigonometric function 
of the spectral parameter is assigned as the Boltzmann weight so as to satisfy the Y B E .  

This paper is also concerned with an analysis of the physical properties of the 
model. Following the line of the argument in [4], one can formulate the vertex model 
as a face model on the dual lattice. An interesting problem is then to evaluate the 
one-point functions called local state probabilities ( LSP). We shall work this out by 
using Baxter’s corner transfer matrix (CTM) method [ 5 ] .  A series of works [6-91 has 
shown that the LSP calculation is intimately related to the representation theory of 
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affine Lie algebras. Our treatment here is the first one for exceptional Lie algebras. 
We find that the LSP is described by an embedding G i ” c  B:”. Namely, the essential 
part of the result is a level-1 string function [ l o ]  of G:” on a B;” module viewed as 
a Gk’) module through the embedding. We remark that the applicability of the CTM 

method is indeed due to a drastic simplification of the representation of U,(G,) at 
q = 0. This seems to provide a further insight into the quantum group, as well as the 
connection to the affine Lie algebras. Actually, such a phenomenon has been studied 
for U,(gl( n, C ) )  [ 111, where a relation was shown with the Robinson-Shensted corre- 
spondence. 

The organisation of the paper is as follows. In the next section we introduce the 
basic ingredients for characterising the quantum R matrix, e.g. the q-deformed universal 
enveloping algebra U,(G,), the fundamental representation and the irreducible 
decomposition of the tensor product. We give the R matrix in the form of spectral 
decomposition, which involves orthogonal projectors onto the irreducible components 
of the decomposition. In section 3 we present a list of the q-Wigner coefficients 
constituting the projectors. We also note some of their properties which will be utilised 
in subsequent sections. Section 4 is devoted to the analysis of the resulting solvable 
lattice model in statistical mechanics. Using the relevant result for a B;” vertex model 
in [4], we explicitly determine the LSP in terms of string functions. In order to make 
the descriptions self-contained, we include two appendices. Appendix 1 is a brief 
exposition of some of the results in [4] regarding the B‘,“ vertex model. Appendix 2 
describes the embedding G:” c B:”. 

We note that the R matrix R (  U, q )  (U = spectral parameter) here extends those 
described earlier in special cases; [12] ( q  = 1) and [13] ( lul-  CO). The eigenvalues of 
the row-to-row transfer matrix have been discussed in [14]. 

Throughout the paper we assume that q is generic, i.e., q # 0 and q“  # 1, V n  E Z 
and use the notation 

q‘; - 4 - x  X X 

[ X I  =- cp(x)= n (1-x ’ )  E ( z , x ) =  n ( l - z x J - ‘ ) ( l - z - ~ x ’ ) ( l - x ’ ) .  
I - 1  I =  I 

2. The quantum R matrix 

2.1. The algebra Uq(G2) 

Let us begin by recalling basic facts about G, and fixing some notation. The algebra 
G2 is a finite-dimensional simple Lie algebra associated with the Cartan matrix 
(At,) ,s , , ,G2,  A , ,  = A22 = 2, A 1 2  = -3, A,, = -1. The root system is well described by 
drawing two equilateral triangles rotated from each other by 60 degrees around the 
common centre (see figure 1). The four vectors pointing from the centre to the specified 
points correspond to the simple roots a I  , a ,  and the fundamental weights A , ,  ;??. 

They are related as follows: 
- 
A ,  =2a,  +3a2 I?.  = a ,  +2a2.  

We adopt the convention so that [long root)? = 2. Thus, for example, the inner products 
( , ) among the roots have the following values: ( a , ,  a I )  = 3(az, a?) = 2, ( a , ,  a,) = -1. 

For later convenience, we also introduce some notation for the affine Lie algebra 
G;” [15]. Let .Ao, A ,  and .A2 be the fundamental weights and S the null root. We set 
p = & + A ,  + A 2 .  In terms of the inner products among the classical parts ;?, ( i  = 1,2), 
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Figure 1. The simple roots a , ,  a2  a n d  the fundamental  weights .I,, .i2. 

we define those on the space E* = @ A , 0 @ A , 0 @ A 2 0 @ 8  by 
- 

(L li,) = (A,,  .i,i A , = i I t - ( 8 , A , ) A 0  
(2.2) 

(8,s) = 0 (8, '40) = (8, -I*) = 1 (8 , -4 , )=2 .  
The quantity (a ,  a), a E %* is called the level of a. Note that (p,  6) = 4  is the dual 
Coxeter number of the algebra G 2 .  

Now we proceed to the description of the algebra U, = U,(GJ and  its representa- 
tions. Consider an  associative algebra generated by the elements X:, H,  ( i  = 1 , 2 )  
under the relations: 

[HI, 4 1  = 0 [H,, X,*] = *A,,X; [ x ; , x ; ] = o  

[61 (x;)'x; -- x;x;x;+x;(x; )?  = 0 
[31 

(2.3)  

(x~)'x;(x,')'-[4]x;x;(x~)'+x;(x,')4= 0. P I 4 1  (x;)"; - [4](x;)3x;x;+- 
PI 

Our U, is a q-analogue of the universal enveloping algebra of G2 having the above 
commutation relations and  endowed with the Hopf algebra structure [ 161. A charac- 
teristic feature is the existence of the algebra homomorphism A,  called comultiplication: 

A :  U, + U,OU, 
A( If,) = H, O 1 + 1 0  H ,  i = 1 , 2  

A( X ;  ) = X 8 q-"'2 'H~ + q " ~ 2 ' H ~ ~  X 7 
h(X,') = x;@q-" * ) " l + q l l  "%OX,'. 

(2.4) 

It is known [17] for generic values of q that every finite-dimensional representation 
of the simple Lie algebras naturally carries over to the one for their q-analogue defined 
as above. In view of this, we shall write V ,  to represent the irreducible U, module 
generated from the highest-weight vector ~ ( ~ i ) ,  where '1 E { A l l I l  + A z A z l A l ,  h 2  E Zzo} 
and u ( R )  defined (up  to a constant multiple) by 



1352 A Kuniba 

The seven-dimensional representation mentioned in the previous section is realised on  
the highest-weight module V i ? .  The weights contained therein are all multiplicity free. 
We name them E, (-3 c p 3)  as follows. 

- 
E - 3  = ’A2 = CY1 +2a2 

E ,  = - 3 s p s 3 .  

8 - 2  = ( Y I  + a2 & - I  = a2 

(2.6) 

Note the obvious relation e 3 =  E ~ + E ? .  In the rest of the paper, we shall fix the 
normalised weight vectors U, to have the weight E, .  Let EgL,  (-3 s p, v s 3) be a matrix 
unit in End( Vi,), i.e. EPvuA = &,,,U,. Then the representation matrices r ( k )  of the 
generators k are 

. r r (X t )  = ‘ r ( X ; )  = El,+ 

r ( X l )  = ‘ r ( X ; )  = E2,+ rE,, + rE- , ,+  

r ( H l )  = -E?:+ E , ,  - + E-?-? (2 .7 )  

rr(H,)=-E,,+E,,-2E,,+2E-,- ,-E-2->+ E-3-3 

r = m  

where ‘ denotes the transpose. We will also need the representation of the root vectors 
X :  and HB associated with the maximal root 6 = h, ( VT, is the adjoint representation). 
They are given by 

. r r (X i )  = * . r r (X i )  = E-r3+ E-,? (2.8) r ( H O ) =  E-Z-2+ E-3-3- E 3 3 -  E>>. 

2.2. Characterisation of the quantum R matrix 

Let R (  U )  = R (  U ,  q )  be an  element of End( Vi,@ Vi,), where U E C is a spectral parameter. 
The quantum R matrix corresponding to the pair (Gill, 7 ~ )  is the solution of the 
following equations in End( Vi ,@ Vi:): 

[ R ( u ) ,  A(U,)I = o  (2 .9a )  
R( x ,  @ 4 3 / ?  IH, + - ? U q  - (3 /2 )H ,  OX,) 

( 2 . 9 b )  

Up to a normalisation, these are known to characterise the matrix R( U )  uniquely due  
to Jimbo [3]. Moreover, one can show that the solution to the equations satisfy the 
Y B E  in End( Vi ,@ V i 2 @  Vi,) (compare with [3]) 

(2.10) 

= ( q - 2 ~ ~ ~ @ q ( 3 / ? I H ~ + q - ( 3 / 2 ) H ~  O X , ) R ( u ) .  

( R  ( u  10 1 )( 1 0 R ( u + u ) ) (  R ( U )  0 1) = ( 1 0 R ( U )  ) (  R ( u  + u )  0 1 ) (  1 0  R ( L( I ) .  

To solve (2.9), we first decompose the U,@U, module Vi ,@ Vi, into irreducible 
modules with respect to A(U,): 

V i2@ V i 2 =  V 2 i 2 0  V 7 , O  Vi2@ VO (2.11) 

which is parallel with the classical case q = 1. Since R ( u )  belongs to the commutant 
of A(U,) (2 .9a ) ,  it must be of the form 

(2.12a) 
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Here the 9'\ are the orthogonal projectors onto the irreducible pieces V ,  and the 
eigenvalues p \ (  U )  are the functions to be determined. The projectors will be described 
in the next section. In particular, relations among the operators 9 , X , 0 q ' 3 , ' 2 ' H ~ B  \ '  

and Oj31q-'3/2'He O X i 8 ' , .  x are determined as in (3 .6) .  Substituting (2 .12a)  into ( 2 . 9 b )  
and using (3 .6) ,  we get 

[ 1 +  u ] [ 4 +  u ] [ 6 +  U ]  

[ l  - ~ ] [ 4 +  ~ ] [ 6 +  U ]  

[ 4 1 [ 6 1 p ' ( u )  = [ 1 + u ] [ 4  - u ] [ 6  + U ]  

for 21 = 2;i2 
for A = A ,  
for A = i2, 1 [ 1 - ~ ] [ 4 +  ~ ] [ 6  - U ]  for A =  0. 

(2 .12b)  

Here we have chosen a normalisation such that R ( 0 )  is the identity. The spectral 
decomposition (2 .12)  recovers Reshetikhin's formula [13]  in the limit q'" + E: 

l im  [ 4 ] [ 6 ] ( q  - q - l ) 3 q L ( 3 U * Y l R ( U )  = e ( A ) q " ~ / ~ l ( C '  \ ) - 2 C (  \ ? I )  9, (2 .13a)  
4 * i ( ' x  \ 

c( .A)=(A,  A + 2 p )  (2 .13b)  

& ( 2 A 2 )  = & ( O )  = 1 (2.13 c )  

The eigenvalues of the constant R matrix (braid operator) are thus readily obtained 
in terms of the Casimir values c(A).  

& ( A , )  = &(A,) = - 1 .  

3. The projectors and the q-Wigner coefficients 

Here we explicitly construct the projectors 8\ appearing in ( 2 . 1 2 ~ 1 )  and exhibit the 
resulting properties of the R matrix. A similar description can be found in [ 1 3 ] .  
Consider the irreducible decomposition (2.1 1 ) .  We denote by {v i  "11 G is dim VI} a 
set of orthonormal weight vectors of V , .  They are expressed in the form 

where the q- Wigner coefficient C::z'( q )  is assumed to be zero unless + E,.  = the weight 
of v i ' ) .  (Note that the index i does not directly correspond to the weight.) From the 
requirement that the vi ' )  and the U, are both orthonormal, we readily see that 

where * stands for complex conjugation. The projector 8, is then given by 

(3.3) 

in which 9\9, = S,,  8\ is evident because of (3 .2) .  Combining this with (2 .12a) ,  we 
get 

R ( u ,  q ) =  R(', q)pvMAEpx@EuA (3 .4a)  
,UKA 

where the matrix element is 
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In fact, if U: in (3 .1)  is a weight vector having the weight E, + E , , ,  then so is the vector 
X p u  Cl::( q)u--yO U-,, with the negated weight. Thus we present the orthonormal vectors 
(3.1) corresponding to the non-positive weights. In  the case that the dimensionality 
of the weight space exceeds 1 ,  there is an  arbitrariness in choosing the weight vectors, 
which does not affect the projector (3 .3) .  The weight vectors for V2iz (dimension = 27)  
are as follows: 

- - U 3 0  U3 v;2  I = r-I ( q  1 / 2 ~ 2 0  u3 + q-l”u3 0 U*) 
vy \ 2 )  = U 2 0  U2 U : ~ i Z i  = r - 1 ( q ” 2 u l  0 u3 + q-” ’u?@ U,) 
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+ ( q  - q-I )[  2]( U”@ U0 - q -I U - I  0 01 - qu ,  53 U- I ) ] .  

The weight vectors for Vi2 (dimension = 7) are as follows: 

(3.5c) 

+ U ,  0 U-I - U- I @  U ]  + ( q  - q - ’ ) u , @  U,]. 

The weight vector for V, (dimension = 1) is 

+ q u , o u ~ , + q - ’ u _ , @ u , - u , o u , ) .  (3.5d) 

Using (2.81, (3.3) and (3.5), one can show the following relations: 

9\X,@q‘3’”’He9\ = 9 \ q - ‘ 3 ‘ 2 ’ H e @ X ; 9 \  # 0 

9 , , X ; @ q ( 3 ’ 2 ’ H @ , \  = - 9 \ q  O X , P , q  

if A E {2A2, X I ,  X2} 
# O  (3.6) - ( 3  2 l H ,  - l 3 / 2 i ( c (  \ I -< (  \ ) i  

if (A ,  A‘) or (A‘, A) E { ( X I ,  2X2), ( A 2 ,  2&), (0, XI)},  
All the other combinations 9,X,@q‘3’2’HeP , and O X i 9 ,  x are zero. 
These relations, together with (2.96) and (2.12a), yield the result (2.126). 

We now state some properties of the R matrix. 

(3.7a) 

(3.7b) 

The support property ( 3 . 7 ~ )  is immediately obvious if we note that [ R ( u ,  q ) ,  A ( H i ) ]  = 
0, i = 1,2  in ( 2 . 9 ~ ) .  There are 175 possible choices of k, v, K and A satisfying this 
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condition. On the other hand, (3 .7b )  holds due to the property Cl$L(q)= 
F(A)C!:(q-’), where the sign factor & ( A )  has been defined in ( 2 . 1 3 ~ ) .  By direct 
computation using (3 .4b )  and (3 .5 ) ,  one can also verify the following. 

( i i i )  lim ~ ( u ,  q)w-’”= C w ~ “ * - ‘ ~ ) E  ,,, o E”,  ( 3 . 9 a )  
q - r O , W = q - 2 ” ; f i X  P” 

where the function H ( E , ,  E , , )  is defined by 

with the two exceptions 

H ( & - 3 ,  E 3 )  = - 1  H ( E 0 ,  E o ) = O .  (3 .96 )  

In fact, (3 .9 )  is due to the fact that each weight space of the V, on the R H S  of (2 .11)  
is spanned by decomposable vectors (pure tensors) U,, 0 U, in the limit q + 0. These 
properties will be used in the evaluation of the local-state probability in the next section. 

4. Related solvable lattice models and the local-state probability 

4.1. A solvable vertex model and the face formulation 

The quantum R matrix constructed in the previous sections gives rise to a solvable 
statistical model, which we are now going to study. Consider a two-dimensional square 
lattice 2’ with a fluctuation variable cy‘” assigned to each bond i. We assume that cy“) 

takes the values in the set {E, ,  1-3 s p S 3) of the weights in the fundamental representa- 
tion. Let E,,, E , ,  E ,  and be the weights on the left, lower, upper and right bond of 
a vertex, respectively. To such a configuration round a vertex, we attach the matrix 
element R (  U, q), ,YKA (3 .4b )  as the Boltzmann weight. This yields a seven-state 175-vertex 
model whose Boltzmann weights obey the YBE. It can also be formulated as a face 
model following [ 4 ] .  Let us consider the planar square lattice 2“ dual to the 2 on 
which the vertex model was defined. We put a site variable a‘” on each site i of 2’ 
and let it range over the set I of the level-1 integral weights of the affine Lie algebra 
Gk’), i.e. 

I={aoAo+aa,A,+a2A,~ao,  a , ,  a 2 € Z ,  a 0 + 2 a , + a 2 =  1). (4.1) 

We shall call an element of I a local state or simply state. For two states a and b, we 
define an ordered pair ( a ,  b )  to be admissible if and only if b - a  = E,  for some 
-3 s p s 3 .  Because of (2 .6) ,  the admissibility of ( a ,  b )  and ( b ,  a )  is equivalent. Let 
a, by c and d be the states on the NW, NE,  SE and sw corners of a face of 2”. To such 
a state configuration, we assign a Boltzmann weight W ( a ,  b, c, d l u )  via the rule 

W ( a ,  b, c, d l u )  
if b - a = E K ,  c - b =  E ~ ,  d - a  = E 

” (4 .2)  
otherwise. 

Thus every adjacent pair of the states must be admissible in the above sense. From 
the definition (4 .2)  and the Y B E  (2.10), it follows that the W(a,  b, cy d l u )  obeys the 

c - d =  E = { O R ( ’ ,  q)pVKA ,,, 
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star-triangle relation [ 5 ] .  It is also easy to see the following properties of the Boltzmann 
weights: 

(4 .3a)  W ( a ,  b, c, d l u )  = W ( a ,  d, c, b l u )  
= W (  a + r, b + r, c + r, d + r /  u ) V r E  I (4 .36 )  

(4 .3c)  

(4 .3d )  
Ga = q-'('+) 

lim 
q - 0 . H  = q - " , . f i x  

W ( a ,  b, c, d l u ) w - ' " 2 =  8 b d w H i b - a " - h i  

where H ( b  -a ,  c - b )  is given by (3 .96) .  These are direct consequences of (3 .4b ) ,  (3 .8) ,  
(3.9) and (4.2). 

Now we proceed to the evaluation of the local-state probability (LSP)  in this face 
formulation. By definition, it is the probability of finding a site variable of T', say 
a( 1 i , in a preassigned state a E I under certain boundary conditions: 

z = c n W(a'" ,  aili, a ' k i ,  a( ' J IU)  

PJll=, = z-' 
c o n f i g u r a t i o n i  faces  

(4.4) 

The star-triangle relation and the properties (4 .3)  imply that we can invoke the corner 
transfer matrix method [ 5 ] .  In the following we shall deal exclusively with the case 
O <  q < 1, Iq-"I < 1. We fix the boundary condition to the ground states, i.e. those 
configurations giving the maximal contribution to Z. In order to specify it, let us 
consider the limit q + 0 keeping w = q-2" fixed. From (4 .3d )  the system is then frozen 
to those configurations invariant under the translation along the SW-NE direction, 
These are labelled by a one-dimensional sequence of the states { a  "/a'  E I ,  j E 
Z, (a'", a( '+'));  admissible} sitting on the horizontal line containing d''. Moreover, 
by the assumption I w [  < 1 ,  there are essentially the three following ground states 
{at '} ,Ez k = 0 ,  1,2: 

8m(11a n W(a" ' ,  a'J) ,  aik), a~"1u) .  
c o n f i g u r a r ~ o n s  fdces 

i f j =  k mod 2 
otherwise 

for k = 0, 1 
(4.5) 

V/. 
a ( J )  - 

2 - A 2  

Thus we consider the LSP P ( a l a k )  ( k  = 0, 1 ,2 )  under the condition that a(" = cry' for 
/ j j>> 1. Applying the corner transfer matrix method, we deduce the following 
expression: 

( 4 . 6 ~ )  P ( a l a k )  = Iim pm(ala:m+", aimt2') 
m - s  

G, fm  ( b - a, c - b ;  924) 
Z, . , ,G, , f , (b-a ' , c -b;  424) Pm(alb,  c) = (4 .6b)  

Here the function f m ( y ,  E " ;  q )  ( m E Z a 0 ,  ~ E Z E , + Z E ~ + Z ~ , = Z E , O Z E ~ )  is the one- 
dimensional ( I D )  configuration sum: 

(4 .7a )  
The outer sum extends over y'" E ( ~ ~ 1 - 3  G Y G 3 )  (1 6 j G m + 1) under the constraint 

(4 .7b)  

E ~ ~ , , H i y l " , y " + l J )  
fm (Y, E p  ; 9) = c 4 
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4.2. The one-dimensional sum and string functions 

The I D  sum (4.7) exhibits a connection of our model to the representation theory of 
affine Lie algebras. It turns out to be a relative of the level-1 string function [lo] of 
Ci;” on B:’’ modules. In  order to state this, we have summarised the necessary 
information about a B‘,” vertex model in appendix 1 .  The principal result therein is 
that the I D  sum g m ( &  e, ; q )  (A1.3) yields the string functions of the level-1 BY’ modules 
L(w, ) ,  L ( w , )  and L ( w , )  as in (A1.6). On the other hand, for n = 3 we can regard these 
modules as Ci;” modules through the embedding #*: Gk’)- B;” described in appendix 
2. The resulting GI” modules are no longer irreducible and the string functions on 
them will become the linear superposition of ( A 1 . 6 ~ )  over the inverse image of the 
map # (A2.1). This has been exactly realised in the fallowing relation between 
f m ( Y ,  e p ;  X)  and gm(5,  e , ;  x): 

An( Y, E, ; x ?  = g,,,(t, e, ; x). (4.8) 
E 

On the RHS,  e, is uniquely determined by 4 ( e , )  = E~ (see (A2.2)) and the sum ranges 
over [ E Z ~ , O Z ~ , O Z ~ ,  such that #([)= y y I , t i + t 2 =  yz if we write [ =  
t i e l  + &e2 + & e 3 ,  y = y 1  E - ,  + yzs-,).  The equality (4.8) directly follows from the 
definitions and the fact that 

A 

H ( E , ,  E , )  = H ( e , ,  e , )  if # ( e , )  = E ~ ,  4(e,) = E,,  (4.9) 

(see (3.9b), ( A 1 . 3 ~ )  and (A2.2)). On the other hand, the ground states (4.5) and  (A1.5) 
are related to each other by 

+(#$) = (+(kl) v, E z (4.10) 

where k* = 0, 1 and 3 for k = 0 , l  and 2, respectively. Combining this with (4.8) and 
(A1.6), we find that the numerator of (4.6b) is proportional to (x = qz4):  

x) = dim L ( w O ~ - , g x ’ .  (4.11) 

Here a E I and the set i, is defined by 1, = { a *  E Z w o O  . . . OZw,l(a*, 8) = 1,4(a*) = a} .  
Thus we conclude that our I D  sum (in the limit m -$ CO) is the level-1 string function 
of (3;’’ on Bill modules viewed as the Gill modules through the embedding +*. 

lim x-$w(wL ‘ f m ( ( + ( k m t l ’ -  a, (+(kmt2) - (+(km+ii; 

< € f “  ’ n, - x 

4.3. The local-state probability 

Having established a characterisation of our  I D  sum, we now turn to the LSP itself. 
By virtue of (4.11), the expression (4.6) is rewritten as follows: 

(4.12) 

In  what follows we shall outline the calculation of the explicit form of P ( a  = aoAo+ 
a , A ,  + a2A21ao). The other cases can be dealt with quite similarly. Consider the quantity 
f m  ( 

c gm (51 el + + 53e3 9 e- I ; x 1 (4.13) 

1 )  - a, (+i”2’ - ubm+’); x)  appearing in (4.11). For even m, this is equal to 

S , T c 3 =  I - o , - a ~ . € , + S ~ = l - 2 a , - u ~  
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where we have used (4.5), (4.8) and eliminated a,, by (4.1). Taking (A1.7) into account 
with n = 3 ,  i = - 1  and 415-w,Iz- f=f [51(51-2)+5t+5: ] ,  we have the limit 

l im  m / 2  fm ( + 1 1 - a, c+;m+ZJ - c+b)n+ll; x )  
m-x .ms2Z 

(4.14) 

Q = - 2) + f ( &  + 2a, + a2 - 1)"4f(51 + 41 + a2 - 1 l 2 *  

The summation is readily carried out by means of the formula [18] 

C (-Z)kXkik-ll/2 - - E(z, x). 
k t Z  

Thus we find that (4.14) is equal to 

, x') - (p(&)~(X6a~-202+3/2 3 x3) X 7 a ~ - 3 0 , a 2 + o ~ - 1 / 2  
cp ( -,&I E ( -X6al - 2 5 i - 3 1 2  

2cp(x)4 

The expression can be further reduced thanks to the identity E(zxk ,x )=  
( - z ) " x - ~ ' ~ - ~ " * E ( z ,  x), V k e  Z. Calculation of the denominator in (4.66) (or (4.12)) 
goes in a parallel way. Below we present the final results for the LSP P ( a l a k )  for 
a = ( 1 - 2~ - U*)&  + U I A I + a2A2, U I , a2 E Z, k = 0, 1,2: 

(4 .15~)  

D, = cp(*q")E(*q2,  q24)E(*q4, q 2 4 ) E ( * q 1 0 ,  q24) 

Do= E ( - q 2 ,  qZ4)E(-qar 924)E(-q10, 924). 

The LSP (4.15) exhibit the behaviour 

Iim ~ ( a ( a , )  = t?on;l~ 

lim P(a la , )  = 0. 

4-0 

4 -1  

(4.1 5 6) 

(4.15~ 

(4.15d 

(4.16a 

(4.16b) 

This implies that our regime 0 < q < 1 is in a low-temperature phase whose boundaries 
q + 0 and q + 1 correspond to the low-temperature limit and  the critical point, respec- 
tively. When q+ 1 -O,the~s~P(uIa,)isoforderIn q. Thedifference P ( a l a l ) - P ( a l c r , )  
vanishes as (In q )  exp[7rr2/(2881nq)]. 
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Appendix 1. Relevant results for a B'," vertex model 

Here we recapitulate the I D  sum results in [4] for the B'," vertex model related to the 
v,ecto,' representation of, B,. The affine Lie algebra B'," is generated by the elements 
H,, X ;  (Os i s  n )  and  d obeying the commutation relations 

[Ei , ,  fi,] = 0 [ fi,, i;] = +?z; [ i t ,  2J = Siifi i  
A A  ( A l . l )  

[d, 23 = *ao& (ad ~ ~ ) l - A ~ ~ X ~  = 0 ( i  # j ) .  

Here the Cartan matrix has beenAchosen as (Ar,)ost,,s, = 23,  - S,,, - SJ ,+ , ( l+  a,,) - 
SI26,,,- S,oSJ2+S,,SOJ,+ SoISI,. Let X* = @woO . . . O@w,OCS be the dual space of the 
Cartan subalgebra 26 We introduce the orthonormal vectors e, (1 i c n )  in 2?* and 
express the fundamental weights w ,  and the simple roots 6, as follows: 

A 

(5, = w ,  - ( U , ,  S ) w ,  

W, = e, +. . . + e ,  

W, = + ( e , + .  . .+e,)  

1 s i s n - 1  

cy 

A 

cy, = e, 

8 = 6 0 + a * , + 2 ( 6 2 + . .  .+&)  

(A1.2) 

1 if i = O ,  1, n 
(wi, fi^)={2 otherwise. 

Assuming linearity and  (8, 8) = 0, (A1.2) defines the inner product ( , ) on the space 
2?*. We extend the index of the vector e, to - n  S i S  n by setting e-, = -e,. Note that 
{e,l-n s i s n} is the set of weights of the vector representation of B,. We introduce 
an  order < in the index set { -n , -n+1,  . . . ,  n} by 1 < 2 <  . . .  < n < O < - n <  
- n + l . . .  <-1. 

The I D  sum associated with the B'," vertex model has the form 

(A1.3a) 

Here, mEZ,,, - n c i s n  a n d & E Z e , @  . . .  OZe,.  Theoutersumistakenover6" 'E 
{ f k ( - n  S k s n} (1  s j  S m + 1)  with the condition X;fil 6"' = 6, ["+') = e,. The function 
H is defined by 

I,", J t? 5' I ' , E l  '+ ' J ! 
g m ( t 9  e l ;  q ) = C  4 

if i < j  
otherwise = 

with the exceptions 

(A1.36) 
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If we write 5 = [ le ,  + . . . + [,,e,,, the following explicit formula is valid: 

( A l . 4 ~ )  
[;I (( e,;  q)=c* q";' .-,, [ f , I P ! - l J  2 + f i ! e i . ~ , ) f i l - f A f . A  

m - 2  

if i 2 0  
otherwise. 

A ={"  1 

The sum X* is taken with respect to the variables pJ E Zzo, - n  S j S n under the 
constraint Xy; -np ,  = m and p ,  - p - ,  = [, for 1 s j s  n. The symbol [;I stands for q- 
multinomial coefficient [ 181 

(Al .4  b) 

The limit m --* CD of the I D  sum (A1.2) gives rise to level-1 string functions of the 
affine Lie algebra B',". Let L ( w )  be the irreducible highest-weight module with the 
highest weight w. Define the 
sequence { S z ' } , , z  of the level-1 integral weights by 

We set L ( w ) ,  = { U  E L ( w ) l h v  = p ( h ) v  for h E &}. 

Assuming that a ^ €  Z w o O . .  .OZw,,  (a^, s*) = 1 and w E {wo ,  w l ,  U,,}, the main result for 
the I D  sum is stated as follows: 

( A 1 . 6 ~ )  Skm+"; q )  = c dim L(w),--i:q' lim q - $ , , , ( w ) g m ( & k m + I ) -  A * ( m + Z ) -  

m - r  I 

a, f f w  

(Al .6b)  

The RHS of ( A 1 . 6 ~ )  is the BY) string function [ lo]  on the module L ( w ) .  In fact, by 
taking the m --* cc limit in (A1.4), the following explict formulae are available, including 
(Al .6):  

lim q ' * p l g m ( t ,  e , ;  4 )  
m -3c.m E 2Z 

where tm and s are given by 

n 

= [ J *  
j =  1 

i=O 

(A1.7a) 

- n S i < - l  

(A1.76) 
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Appendix 2. The embedding G y ’ c  BY) 

The embedding of the affine Lie algebra GI” in B;’’ is the key to characterising our 

2S,,-S,,+,-6,,+,(1+26,,), will be denoted by x : , h ,  ( O s i s 2 )  and d. Let X* be as 
defined in appendix 1 with n = 3, i.e. the dual space of the Cartan subalgebra for B:”. 
We define a @-linear map 4 : &* + X* by 

I D  sum (4.7). Here, the generators of Gb” satisfying ( A l . l ) ,  but with (Alf)$Gl,fG2- - 

(A2.1) 

(A2.2) 

(A2.3) 

The consistency of the commutation relations under (A2.3) can be directly checked. 
Thus 4* defined as above gives the embedding of the affine Lie algebra G$”- B:”. 
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